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Abstract
Silent speech interfaces (SSIs) are subject of growing in-

terest, as they can enable speech communication even in the
absence of the acoustic signal. Among sensing techniques used
in SSIs, radar sensing has many desirable characteristics, such
as non-invasiveness and comfort. Although promising results
have been achieved with radar-based SSIs, some of its crucial
parameters are yet to be investigated, e.g., the optimal type and
position of the antennas. To fill this gap, this study investigated
the performance of a radar-based SSI with 3 antenna types at-
tached to 3 positions on the speaker’s cheek (9 setups). A cor-
pus of 25 phonemes uttered under co-articulation effects was
recorded with the 9 setups by 2 native German speakers and
then classified with respect to the phonemes. A linear mixed-
effect model was fitted to the resulting recognition rates and
likelihood ratio tests showed significance for the effects of an-
tenna type and position. The two monopole-type antennas per-
formed better than the Vivaldi-type antenna (2.7%± 2.8% and
6.2%±3.0% improvement), and the two positions closer to the
speaker’s lips performed better than the most distant position
(decrease of 2.8% ± 0.9%). This provides more solid founda-
tion for the development of this type of SSI.
Index Terms: silent speech interfaces, continuous-wave radar,
monopole antenna, Vivaldi antenna, linear mixed-effect models

1. Introduction
The advent of silent speech interfaces (SSIs) opened new pos-
sibilities for speech communication when its acoustic signal is
totally or partially unavailable. This is due to the ability of SSIs
to sense speech-related bio-signals such as muscle [1, 2], brain
[3, 4] or articulatory [5, 6] activity and use them as input to
speech recognition and/or synthesis systems. Some of the goals
of SSIs are to allow speech impaired people to communicate
more fluidly and to enable speech communication in severely
noisy environments. Current challenges of SSIs are improving
stability and portability while also being convenient and non-
invasive to use. For reviews on SSI research, see [7, 8, 9].

Some of the most developed sensing technologies in SSIs
are surface electromyography (sEMG) [1, 2] and permanent
magnet articulography (PMA) [10, 5]. A device composed of
11 face- and neck-worn sEMG sensors was the basis for a SSI
able to achieve 91.1% subject-specific word recognition rate
with a large vocabulary [1]. The SSI developed by [2] con-
sidered channel correlation of multi-channel sEMG, convert-
ing signals from time- to frequency-domain and achieving 90%
word recognition rate with a 10-word corpus. Direct synthesis
in real time was performed by [10, 5] with a PMA-based SSI,
whose sensors were attached to the speaker’s lips and tongue,

achieving an intelligibility rate of 92%. Another sensing tech-
nology for SSIs is the electro-optical stomatography (EOS),
which measures jaw, lip and tongue movement using electrical
contact and optical sensors mounted on a pseudopalate, worn
inside the speaker’s mouth. Subject-specific and -independent
word recognition rates of 97% and 56%, respectively, were
achieved with a 30-word corpus by [6]. Despite impressive re-
sults, these systems may still be improved, e.g., by reducing the
number of sensors to improve stability, portability and conve-
nience of use (11 in [1] and 6 in [2, 10, 5]), and are still invasive,
in the case of PMA- and EOS-based SSIs.

As an alternative, radar-based SSIs have the potential to
overcome difficulties faced by other SSIs. The sensing of
speech-related signals by radar sensors was first presented by
[11], but the development of SSIs based upon that began later
either with antennas a few centimeters away from the speaker
[12, 13] or attached to the speaker’s face [14, 15, 16]. Whereas
contactless radar-based SSIs sense speech motion from the
radar signal reflected from the speaker’s face, SSIs with anten-
nas attached to the speaker’s face capture transmission and re-
flection spectra from the upper vocal tract. Radar-based SSIs
have shown potential for practical applications, being com-
fortable and non-invasive to use and presenting relatively high
recognition rates. Using contactless antennas, patterns were
found in I/Q radar signals of words and sentences [12], whereas
a 88% subject-specific and 81.80% session and subject indepen-
dent word recognition rates were achieved with a 13-word cor-
pus [13]. Using antennas on the speaker’s face, [14] achieved
93% subject-specific recognition rate with a 25-phoneme cor-
pus, whereas [16] achieved 99% and 89% subject-specific
recognition rates with a 50-word corpus in multi-session and
inter-session settings, respectively. Despite the encouraging re-
sults shown so far, challenges like system portability and vari-
ability of speakers and sessions have not yet been completely
overcome and understood.

Additionally, the SSI developed by [14, 16] has parameters
whose effects have not yet been investigated, e.g., the optimal
type and position of the antennas. These studies used one sin-
gle antenna type, without an empirical basis to determine its
type and position. In this study we wanted to investigate if the
recording setup used by [14, 16] can be improved by either us-
ing another type of antenna and/or positioning it differently on
the speaker’s face. For that, we recorded the same corpus as [14]
with the same hardware as [16], but with different setups, vary-
ing antenna types and positions. We then performed phoneme
recognition tasks and analysed the significance of each parame-
ter with contingency tables and linear mixed effect models using
recognition rates as the dependent variable.
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Figure 1: Front and back of the used antennas. A tape with
centimeter markings serves as a size reference. Left: disc-
shaped monopole antenna with a guard ring. Center: half-disc
monopole antenna. Right: antipodal Vivaldi antenna.

2. Experiment design
The experiment designed to compare the performance of our
radar-based SSI used three different antenna types: a disc-
shaped monopole antenna with a guard ring (MD), a half-
disc monopole antenna (MH), and an antipodal Vivaldi antenna
(AV), as shown in Figure 1.

The AV antenna is exactly the same as in [16] and an up-
dated version of the antenna used in [14], with a solid sub-
strate. It served as the baseline antenna type and is presented
in more detail in [17]. The MH antenna is exactly the same as
in [18]. Monopole antennas are usually used for on-body appli-
cations [18, 19] and relevant parameters are their height, ideally
as small as possible, and the curvature of the surface they are
attached to, ideally flat [20]. To improve these parameters, the
MD antenna was used, as it is smaller and more likely to have a
flat contact surface with the skin compared to the MH antenna.

To solely vary antenna types may not yield the fairest com-
parison. Since the investigated antennas have different sizes and
cover different areas of the upper vocal tract with their emission
characteristics depending on where they are fixated, we varied
antenna position in the experiment, as shown in Figure 2.

In summary, we varied between three antenna types and
three antenna positions. In all positions, the center point of
the antenna was aligned with the line between the speaker’s
lips. The positions differ with regard to the distance between
the edge of the antenna and the corner of the lips (0.5 cm in
A, 1.5 cm in B, and 2.5 cm in C). The three chosen positions
are appropriate to investigate the antenna behavior horizontally
along the upper vocal tract, assessing the movement of articula-
tors, mainly the tongue, along this axis.

The corpus used in the experiment is detailed in Table 1
and is the same as in [14]. It consists of logatomes of 15 vowels,
each in the context of 10 consonants, and of 10 consonants, each
in the context of 8 vowels. The total number of logatomes was,
thus, 15× 10 + 10× 8 = 230. The corpus was recorded once
for each of the nine combinations of antenna type and position
(setups). This procedure was carried out for two native German
speakers, in two different sessions for each. The grand total of
recorded tokens was 8280 (2 speakers × 2 sessions × 9 setups
× 230 tokens = 8280).

Figure 2: The nine used combinations of antenna type and posi-
tion. Top row: MD antenna. Middle row: AV antenna. Bottom
row: MH antenna. Positions are indicated by A, B, and C.

Table 1: Logatomes composing the corpus, which were pro-
duced for all context consonants C ∈ {/b, d, g, l, ö, f, s, S, m, n/}
and all context vowels V ∈ {/a:, e:, i:, o:, u:, E:, ø:, y:/}. The
target phonemes are underlined and all logatomes were pre-
ceeded by the German article ”Eine” during the recording.

Tense vowels Lax vowels Consonants

/Ca:d@/ /Cıt@/ /VbV/
/Ce:d@/ /CEt@/ /VdV/
/Ci:d@/ /Cat@/ /VgV/
/Co:d@/ /COt@/ /VlV/
/Cu:d@/ /CUt@/ /VöV/
/CE:d@/ /CYt@/ /VfV/
/Cø:d@/ /Cœt@/ /VsV/
/Cy:d@/ /VSV/

/VmV/
/VnV/

3. Data processing and analysis
Recordings took place in an acoustically treated room, as shown
in Figure 3. The data flow can be described as follows: the
left-cheek antenna emits a stepped frequency continuous wave
signal (128 linearly spaced steps between 1 GHz and 6 GHz),
whereas the right-cheek antenna receives this signal after trans-
mission through the upper vocal tract. The radio-frequency
(RF ) signal flows from this antenna into the hardware. It is am-
plified, then goes through a downmixer stage, which converts it
to a fixed intermediate frequency (IF ) of 1 MHz, and is finally
low-pass filtered (cut-off frequency of 1.407 MHz) before be-
ing sampled with an analog-to-digital converter. Finally, this
processed received signal is sent to the micro-processing unit,
which sends it to a PC (computer) via a USB 2.0 connection.

The resulting raw radar data are vectors of complex num-
bers sampled at the rate of 100 Hz. Each vector represents the
transmission spectrum from the left cheek to the right cheek of
the speaker during the utterance of the corpus. The transmission
spectrum was obtained by the division of the signal received by
the right-cheek antenna by the signal sent by the left-cheek an-
tenna. This procedure is described in greater detail in [16].

To extract the target phonemes, recorded data were seg-
mented with Praat [21] using the audio recorded simultane-
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Figure 3: Recording setup of the experiment. The speaker is
located on the left, with the antennas attached to his cheek.

Table 2: Grid search values used in the hyperparameter opti-
mization of the SVM and MLP classifiers. Solver (lbfgs) and
maximum number of iterations (750) were fixed for MLP.

Classifier Hyper-param. Values

SVM C {1, 10, 50, 100}
gamma {10−4, 10−3, 10−2, 10−1}

MLP

activation {tanh, relu}
hidden layer size {100, 50}

learning rate {constant, adaptive}
alpha {0.0001, 0.05}

ously with the radar data. Only the middle frame of each
phoneme was extracted and used further, aiming at the frame
where the articulation is most stable, with the least influence of
co-articulation from adjacent phonemes. As a result, each tar-
get phoneme was represented by a 128-dimensional vector of
complex numbers.

To objectively measure how well our SSI performed with
each antenna type and position setup, we performed a classifi-
cation task with three different classifiers (Linear Discriminant
Analysis (LDA), Support Vector Machines (SVM), and Multi-
Layer Perceptron (MLP)) whose goal was to classify the 25
phonemes of the corpus. The evaluation was carried out with
a nested cross-validation (CV), with the inner CV optimizing
the hyperparameters of SVM and MLP by grid-search (see Ta-
ble 2), and the outer CV running the classifiers with optimal
hyperparameters. This analysis was performed separately for
each speaker and each session. The inner CV was 6-fold and
the outer CV was 8-fold, as those were the highest number of
folds that allowed one token of each class in each fold. This
procedure was performed using the scikit-learn library [22].

As input to the classifiers, we used four feature sets based
on transformations of the raw radar data: spectral magnitude,
phase, impulse response and a concatenation of spectral magni-
tude and phase. Feature sets were also standardized (mean value
set to 0 and variance set to 1) individually, i.e., when magnitude
and phase were concatenated, one standardization took place for
each feature. Figures 4 and 5 depict examples of the magnitude
and impulse response features.

The significance of the parameters in the experiment can
be assessed by analyzing the phoneme recognition rates. This
analysis was composed of contingency tables and linear mixed
effect models (LMEM). The contingency tables allow a visual
overview of the results, with accuracy rates pooled within vari-
ables. The LMEM fits linear models to the data, taking into
account fixed and random effects, while also being subject to
statistical tests.

Figure 4: Spectral magnitude of the raw radar data of tense
vowels /a:/ and /u:/ under different contexts with antenna type
MD and position A. The shades represent the standard deviation
across repetitions.

Figure 5: Impulse response of the raw radar data of tense vow-
els /a:/ and /u:/ under different contexts with antenna type MD
and position A. The shades represent the standard deviation
across repetitions.

4. Results and discussion
An overview of the obtained recognition rates is shown in Fig-
ure 6. The contingency tables obtained by pooling the recog-
nition rates into the variables of interest of the experiment are
shown in Figure 7, where some trends can be visually identi-
fied. Speaker 2 achieved higher recognition rates than speaker
1 across all variables. Similarly, SVM and MLP classifiers
achieved higher recognition rates than LDA across all variables.
Feature sets composed of the spectral magnitude and of its con-
catenation with phase also showed higher recognition rates than
other features sets across all variables. Antenna types also
achieved different recognition rates across variables, with the
AV antenna having the lowest. The variation of antenna posi-
tion also affected the recognition rates, but different antennas
presented different trends.

Each variable seems to have an effect on the recognition
rates obtained by our radar-based SSI, but to ensure the sig-
nificance of these effects, we fitted a LMEM to our data, with
recognition rate as dependent variable and speaker, classifier,
feature set, antenna type and position as independent variables.

We used R [23] and lme4 [24] to fit the LMEM and ana-
lyze how the recognition rate is affected by antenna type and
position. As fixed effects we considered antenna type and po-
sition, with an interaction term between them. This choice was
made, given that the size of the antennas varies with their type,
justifying the assumption that the same displacement may have
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Figure 6: Boxplots of the recognition rates obtained by the clas-
sification task. The boxplots are here grouped by antenna type
and position.

Figure 7: Contingency tables for the classification recognition
rates. Abbreviations used for features sets: MAG for spectral
magnitude, PHA for phase, M&P for concatenation of spectral
magnitude and phase, and IMP for impulse response. The color
code goes from white (lowest value) to red (highest value) for
each pair of variables.

different effects on different antennas. As random effects, we
considered intercepts for speaker (with the session nested un-
der it), classifier and feature set, as well as random slopes for
the effect of antenna type on these variables. We inspected the
residuals of the model and did not notice any sign of deviation
from homoscedasticity or normality.

To obtain p-values, we performed likelihood ratio tests be-
tween the full model described above and models without in-
dividual fixed effects of antenna type and position, but with
the same random effects. Antenna type (χ2(6) = 41.056,
p = 2.823 × 10−7) and position (χ2(6) = 49.668, p =
5.479 × 10−9) had significant effects on the phoneme recog-
nition rate. Increases of 2.7% ± 2.8% and 6.2% ± 3.0% were
estimated by the model when switching from the AV antenna
to the MD and the MH antenna, respectively. Likewise for the
antenna positions, decreases of 0.1%±0.9% and 2.8%±0.9%
were estimated when changing from position A to positions B
and C, respectively.

Before discussing the results, it is important to highlight
the limitations of this study. The sample size of investigated an-
tenna types and positions did not exhaust the set of possibilities,
as new antennas may be designed in the future and more posi-
tions may be introduced into our system, e.g., to capture nasal
coupling and/or glottal movement. Additionally, the antenna
types AV and MH have SMA connectors (SubMiniature version
A) which hinders the contact of their full surface with the skin
(see Figure 1), creating an air gap between the antenna and the
skin, changing its radiation characteristics [25]. Since the MD
antenna’s JSC connector does not introduce this effect, this may
have influenced the results in this study. The JSC connector,
however, introduces the need for an SMA-JSC adapter, since the
SSI’s hardware is equipped with SMA connectors, and also for
cables connecting the adapter to the antenna (see top row of Fig-
ure 2). In comparison with the SMA-cables (seen in Figure 3),
these JSC-cables are more prone to breakage and less shielded.
This results in a stronger coupling between JSC-cables, which
introduces noise into the measurement. This effect should be
investigated further and, if possible, minimized in next studies
with our SSI. Besides that, this study was more concerned with
comparing antenna types and positions than with achieving the
highest possible recognition rate. Therefore, rather simple types
of classifiers were used, and the hyper-parameter optimization
was not exhaustively performed.

From this study can be concluded that our radar-based SSI
achieved better recognition rates with monopole antennas than
with Vivaldi antennas. This may be due to differences in radi-
ation characteristic. Monopole antennas radiate in the direction
of the vocal tract, whereas Vivaldi antennas also radiate tan-
gentially to the skin. Additionally, this improvement is more
notable with the MH antenna than with the MD. Analysing the
t-values (ratio between estimated slope and its standard error)
estimated by the LMEM, MD antenna had t = 0.972 and MH,
t = 2.037. The low value for the MD antenna may be due to
the higher variance of the AV antenna, despite its lower mean
accuracy for all positions.

Different antenna positions also yielded different recogni-
tion rates, depending on the antenna type. Positions A and B
were superior compared to position C, when using antennas AV
and MD. However, the trend observed with antenna MH was
different: positions A and C achieved the best results over po-
sition B. This suggests that our SSI’s performance may vary in
a non-linear manner with the distance between the antenna and
the lips, and could explain the low t-value estimated for position
B (t = −0.129) in comparison with position C (t = −3.008).
An analysis on how different phonemes were recognised with
the different antenna positions may shed more light into the is-
sue, as different phonemes have different places of articulation
and some might have been better accounted for depending on
the position of the antenna.
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Sächsische Aufbaubank (SAB) under grant number 100328626
and by the German Federal Ministry of Education and Research
(BMBF) under grant number 20D1930B.

6. References
[1] G. S. Meltzner, J. T. Heaton, Y. Deng, G. De Luca, S. H. Roy, and

J. C. Kline, “Development of sEMG sensors and algorithms for

3636



silent speech recognition,” Journal of neural engineering, vol. 15,
no. 4, 2018.

[2] Y. Wang, M. Zhang, R. Wu, H. Gao, M. Yang, Z. Luo, and G. Li,
“Silent speech decoding using spectrogram features based on
neuromuscular activities,” Brain Sciences, vol. 10, no. 7, 2020.
[Online]. Available: https://www.mdpi.com/2076-3425/10/7/442

[3] M. Angrick, C. Herff, E. Mugler, M. C. Tate, M. W. Slutzky, D. J.
Krusienski, and T. Schultz, “Speech synthesis from ECoG using
densely connected 3d convolutional neural networks,” Journal of
Neural Engineering, vol. 16, no. 3, 2019.

[4] G. K. Anumanchipalli, J. Chartier, and E. F. Chang, “Speech syn-
thesis from neural decoding of spoken sentences,” Nature, vol.
568, pp. 493–498, 2019.

[5] J. A. Gonzalez, L. A. Cheah, A. M. Gomez, P. D. Green, J. M.
Gilbert, S. R. Ell, R. K. Moore, and E. Holdsworth, “Direct speech
reconstruction from articulatory sensor data by machine learning,”
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 25, no. 12, pp. 2362–2374, 2017.

[6] S. Stone and P. Birkholz, “Cross-speaker silent-speech com-
mand word recognition using electro-optical stomatography,” in
ICASSP 2020 - 2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2020, pp. 7849–
7853.

[7] B. Denby, T. Schultz, K. Honda, T. Hueber, J. Gilbert, and
J. Brumberg, “Silent speech interfaces,” Speech Communication,
vol. 52, no. 4, pp. 270–287, 2010.

[8] T. Schultz, M. Wand, T. Hueber, D. J. Krusienski, C. Herff, and
J. S. Brumberg, “Biosignal-based spoken communication: A sur-
vey,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, no. 12, pp. 2257–2271, 2017.

[9] J. A. Gonzalez-Lopez, A. Gomez-Alanis, J. M. Martı́n Doñas,
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