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Abstract
We propose a new method to estimate the glottal vocal tract ex-
citation from speech signals based on deep learning. To that
end, a bidirectional recurrent neural network with long short-
term memory units was trained to predict the glottal airflow
derivative from the speech signal. Since natural reference data
for this task is unobtainable at the required scale, we used the ar-
ticulatory speech synthesizer VocalTractLab to generate a large
dataset containing synchronous connected speech and glottal
airflow signals for training. The trained model’s performance
was objectively evaluated by means of stationary synthetic sig-
nals from the OPENGLOT glottal inverse filtering benchmark
dataset and by using our dataset of connected synthetic speech.
Compared to the state of the art, the proposed model produced a
more accurate estimation using OPENGLOT’s physically syn-
thesized signals but was less accurate for its computationally
simulated signals. However, our model was much more accu-
rate and plausible on the connected speech signals, especially
for sounds with mixed excitation (e.g. fricatives) or sounds with
pronounced zeros in their transfer function (e.g. nasals). Future
work will introduce more variety into the training data (e.g. re-
garding pitch and phonation) and focus on estimating features
of the glottal flow instead of the entire waveform.
Index Terms: Glottal inverse filtering, glottal source estima-
tion, source-filter separation, speech synthesis

1. Introduction
Human speech is produced by the interaction of respiration,
phonation and articulation [1]. The lungs provide an airflow that
can cause flow-induced, quasi-periodic vibration of the vocal
folds (called voiced phonation). The resulting pulsed glottal air-
flow serves as the primary acoustic source of the human voice.
This source signal is then filtered by the vocal tract during ar-
ticulation and radiated at the mouth as the speech signal. The
glottal airflow carries diverse information about the speaker’s
anatomy, the phonation type and the movement of the vocal
folds [2]. Unfortunately, the glottis is inaccessible without in-
vasive and obstructive equipment. The glottal flow is therefore
very difficult to measure directly. However, there are numerous
techniques to estimate the glottal flow from the radiated, vocal-
tract-filtered speech signal. Despite an inevitable estimation er-
ror, these techniques can still be helpful, e.g. for the detec-
tion of voice disorders [3], diseases [4,5], speaker identification
and verification [6, 7], and emotion recognition [8]. The pro-
cess of eliminating the effects of the vocal tract filter from the
speech signal is known as glottal inverse filtering (GIF) (see [9]
for a recent review). Established algorithms for GIF are gen-
erally based on linear prediction (LP) [10], specifically iterative
adaptive inverse filtering (IAIF) [11] and the quasi-closed phase
(QCP) analysis method [12]. While these methods are quite
popular and achieved considerable successes, they require the
identification of the glottal closure and opening instants, be-
cause the estimation of the vocal tract model takes place during

the closed phase of the glottis, i. e. when the glottal flow sig-
nal UG(z) ≈ 0 [13]. These methods therefore depend on the
precision of algorithms which estimate these instants. More-
over, the order of the LP filter must be adapted to the signal,
which often requires manual intervention. It was also reported
that an increase of the fundamental frequency will decrease the
performance [14]. To avoid these limitations, some GIF algo-
rithms are based on spectral decomposition (e.g. zeros of the
Z-transform or complex cepstrum decomposition) [15]. The
idea here is to decompose the speech signal into minimum-
phase (causal) and maximum-phase (anticausal) signal compo-
nents [16]. The maximum-phase contribution to the speech sig-
nal corresponds to the glottal flow during the glottal open phase,
whereas the minimum-phase is (among others) associated with
the vocal tract impulse response. The decomposition requires
the exact identification of the glottal phases and also depends on
the (often manual) choice of window length and function [17].
Neural networks have been successfully applied to inverse filter-
ing or deconvolution problems in non-speech-related contexts
for several decades (e.g., [18, 19]). In speech research, the lack
of available reference glottal flow data for training all but rules
out supervised training approaches. A possible workaround is
to use one of the non-neural methods to generate reference glot-
tal flow data for training and validation purposes. This limits
such a system to the performance of the employed reference al-
gorithm, however, and constrains the approach conceptually to
rather specific scenarios (e.g. [20]).

The present study adopted a novel approach to glottal
flow estimation to overcome the above problems: We trained
a recurrent neural network to directly map the time-domain
representations of speech signals to the corresponding time-
domain signals of the glottal flow derivative. The required
training data was obtained by synthesizing paired speech and
glottal flow signals using the articulatory speech synthesizer
VocalTractLab1 [21]. The model was therefore trained en-
tirely on synthetic signals. However, it could still be used to
infer glottal flow signals from natural speech signals due to the
similarities between the natural and synthetic domains. The
model performance was evaluated on the OPENGLOT dataset
[22] and compared to the reference algorithm IAIF. While
IAIF achieved slightly higher marks (in terms of correlation
and open quotient error) on the computationally and physi-
cally synthesized isolated vowel sounds contained in OPEN-
GLOT, our model produced much more plausible glottal flow
signals on continuous utterances than IAIF without manual in-
tervention, especially for nasal sounds, voiced fricatives, and
unvoiced/voiced transitions.

2. Datasets for training and validation
As described in section 1, the reference glottal flow data re-
quired for a supervised learning approach is prohibitively dif-

1https://www.vocaltractlab.de
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ficult to obtain with human speakers. We therefore generated
synthetic speech signals and the corresponding glottal flow data
using articulatory synthesis. The idea was to exploit the similar-
ity between the synthetic and the natural domain, train entirely
on synthetic data but still use the trained model to infer the glot-
tal flow corresponding to natural speech. However, an objective
evaluation of the model performance on natural speech is also
difficult because of the same lack of reference glottal flow data.
We therefore used three different datasets: an articulatorily syn-
thesized dataset for training, the physically and computationally
synthesized OPENGLOT dataset [22] for objective evaluation,
and the BITS Unit Selection corpus [23] for a qualitative sam-
ple and plausibility check of the performance on real human
speech.

2.1. Articulatorily synthesized dataset

The training data was generated using VocalTractLab
(VTL). VTL is an articulatory speech synthesis system that sim-
ulates the entire speech production process. It combines aerody-
namic, articulatory, and acoustic models to produce speech of
a quality comparable to other academic, natural-speech-based
synthesis systems [24] (albeit still much less natural than the
commercial state of the art). In VTL, the trachea, the glottis
and the vocal tract are approximated geometrically by a series
of cylindrical tube sections with variable length and diameter
whose dimensions are obtained from a 3D model of the vocal
tract [21] and a geometric model of the vocal folds [25]. For
the aerodynamic-acoustic simulation, a transmission-line model
is used, where each tube section is represented as an electrical
two-port network [26]. The models of the vocal tract and the
vocal folds are controlled by a set of parameters, which are var-
ied by means of a so-called gestural score. A gestural score con-
tains eight articulatory trajectories, whereby the first five control
the movements of the active articulators, the sixth the phona-
tion type, the seventh the fundamental frequency contour and
the eighth the subglottal air pressure from the lungs. The glottis
model, which was based on an original version by Titze [27],
describes the glottal area between the lower and upper vocal
fold edges as a function of time and is able to produce skewed
asymmetric glottal area waveforms as well as diplophonic dou-
ble pulsing. The vocal tract is controlled by concatenating a
series of target vocal tract shapes with a specified duration, and
then interpolating these targets using the Target Approximation
Model (TAM) [21]. While gestural scores are usually speci-
fied by hand, version 2.3 of VTL introduced a new function
that can initialize a gestural score based solely on the phone
labels and their durations. To obtain the phone labels and du-
rations from normalized orthographic text, a recently-presented
(closed-source) preprocessing frontend [28] was used. The text
material used for the synthesis was selected based on three sen-
tence comprehension tests from the field of audiometry: The
Berliner [29], Marburger [30], and Oldenburger Satztest [31],
which were all designed to be phonemically balanced. As the
text preprocessing module could only process declarative sen-
tences, all imperative sentences were treated as declarative and
all interrogative and exclamatory sentences were excluded. The
163 remaining sentences from the Berlin and Marburg sets were
selected and supplemented by 30 sentences generated according
to the procedural Oldenburg test to restore phonemic balance for
a total of 193 sentences. Using the pipeline described above,
193 gestural scores were generated based on these sentences
with the respective default fundamental frequency contour and
speech rate (as determined by the preprocessing module), and

with modal phonation of the voiced sounds. These 193 initial
scores only corresponded to roughly seven minutes of audio.
Since articulatory synthesis is entirely parametric, however, we
created a number of variants of each sentence by changing the
phonation type of the voiced segments, the mean fundamental
frequency, the speech rate (in terms of a linear stretch factor
of the phone durations), and by adding noise. In order to do
that, we randomly sampled values from the discrete ranges and
continuous distributions given in Table 1 and manipulated the
parameters of the baseline gestural scores accordingly. In total,
we generated scores corresponding to an additional 113 min of
speech for a total of about 120 min.

Table 1: Distributions and value ranges for the training data
augmentation

Voiced phonation type: [breathy, modal, pressed]
Fundamental frequency f0 [32]: N (µf0 = 120 Hz, σf0 = 19 Hz)
Speech rate factor sr [33]: N (µsr = 1, σsr = 0.15)
Noise models: [white, babble]
Noise levels: [clean, 20 dB, 30 dB]

Finally, the gestural scores were used to synthesize the
speech signals and the corresponding glottal flow signals ac-
cording to VTL’s geometric glottis model. All signals were
downsampled to 8 kHz to reduce the computational load of the
downstream processing. The entire dataset is available in the
supplemental material accompanying this paper2.

2.2. OPENGLOT

OPENGLOT is a free and open collection of data designed to
evaluate GIF algorithms [22]. It consists of four subsets called
repositories. Three of these repositories contain glottal flow
data (see Table 2) and were therefore chosen for this study.
Since VTL is currently only based on a male speaker, we ex-
cluded the female data from OPENGLOT. The phoneme set in-
cluded in OPENGLOT is fairly limited and only includes a few
vowels. The duration of each utterance is also very short (less
than 1 s) and there are no transitions included. These limitations
along with the employed synthesis methods bias the corpus to-
wards the (unrealistic) linearly separable source-filter assump-
tion and the all-pole filter model underlying IAIF. For lack of
a more realistic and diverse alternative, it was still used for the
objective evaluation.

2.3. BITS Unit Selection corpus

The BITS Unit Selection corpus [23] contains recordings of
1683 German sentences each spoken by four speakers (two
male, two female) originally intendend for unit selection speech
synthesis. In addition to the audio signal, the corpus also in-
cludes synchronous electroglottography (EGG) signals made
with a LaryngoGraph PCLX. The EGG signals are quite similar
to glottal flow signals but have some key differences that make it
unwise to use them as a quantitative reference. The main reason
is that the EGG ultimately measures the contact area of the vo-
cal folds, which is correlated with but not identical to the glottal
flow. However, the continuous natural speech in this corpus is
clearly a more useful and practically relevant domain to evalu-
ate a GIF algorithm than synthetic isolated sounds. In this study,
we therefore used this dataset only for qualitative comparative

2https://vocaltractlab.de/index.php?page=
birkholz-supplements
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Table 2: Details of the three repositories from OPENGLOT used in this study

Data generation method Content

Repository I
(144 samples)

linear source-filter model
(Liljencrants-Fant excitation, all-pole vocal tract filter,
fs = 8 kHz)

f0: from 100 Hz to 200 Hz in 20 Hz steps
phonation type: normal, breathy, whispery, creaky
vowels: /A, æ, i, u, o, e/

Repository II
(48 samples)

physical computer simulation
of speech production (fs = 44.1 kHz)

f0: 82 Hz, 110 Hz, 156 Hz, 220 Hz
vocal fold adduction ξ02: 0.09 cm, 0.06 cm, 0.03 cm
vowels: /A, æ, i, u/

Repository III
(44 samples)

physical system with an acoustic source
and 3D printed vocal tract
(fs = 44.1 kHz)

f0: from 100 Hz to 200 Hz in 10 Hz steps
vowels: /A, æ, i, u/

analysis of the glottal flow signals produced by our proposed
model.

3. Model training
Estimating the glottal flow signal from the speech signal is a
sequence-to-sequence transformation task. To avoid having to
deal with constant offsets, scaling issues, and to limit the influ-
ence of the radiation characteristic at the mouth on the glottal
flow ug(k), we instead used its first derivative u′

g(k) through-
out this study. All presented glottal flow signals were obtained
by trapezoidal numerical integration of the derivative. For the
transformation, we used a comparatively simple yet powerful
bidirectional recurrent neuronal network with long short-term
memory units (BiLSTM), which mapped the speech pressure
signal s(k) as input to the first derivative of the glottal flow as
the output û′

g(k). The model was implemented in PyTorch [34].
Only the VTL dataset (speech and corresponding reference glot-
tal flow) was used for the training. It was split into a 100 min
training subset and a 20 min validation subset, partitioned along
the original 193 sentences. Thus, no particular phone sequence
appeared both in the training and the validation set. During
the training process, the speech and the corresponding glottal
flow derivative signals were subdivided into sequences with K
time steps. To ensure at least one glottal cycle in the training
sequences given the expected fundamental frequency ranges of
German males [32], we chose a length of K = 120 samples
(≈ 15 ms corresponding to an f0 floor of 67 Hz). The L2 loss
between the estimated glottal flow derivative û′

g(k) and the ref-
erence glottal flow derivative u′

g(k), backpropagation through
time, gradient clipping, and stochastic gradient descent were
used for training. The BiLSTM consisted of a single LSTM
layer with a hidden size N (processing the input in forward and
backward direction) and a dense layer of size 2N . According
to [35], the learning rate α and hidden sizeN have the strongest
influence on the performance of a BiLSTM model. We there-
fore trained models for all permutations of α ∈ {0.01, 0.1} and
N ∈ {5, 10, 20, 30, 40, 50}. The method to choose the hyper-
parameters of the BiLSTM model deviated from the best prac-
tice in machine learning to account for the different domains
in the training (synthetic speech) and the production (natural
speech) environment: The final model was not chosen based on
the performance on the test subset of the VTL dataset, but on
the performance on the OPENGLOT dataset. While the OPEN-
GLOT data was still not truly natural data, this still better repre-
sents the domain shift that the model endures between training
and production. Another aspect of the domain shift is that a
certain level of underfitting the model was actually desirable,
in order to avoid learning details that are only present in syn-

thetic but not in natural speech data. We therefore trained mod-
els on random, overlapping subsets of the training data of the
lengths Ttrain ∈ {5, 10, 20, 40, 60, 80, 100} (in minutes). In
total, 84 models were trained (2 learning rates × 6 hidden sizes
× 7 training subsets).

4. Results and discussion
All 84 trained models were evaluated on the OPENGLOT sub-
set described in subsection 2.2. The performance was deter-
mined both in terms of the difference of the open quotient ∆OQ
[36] and the cross-correlation r between ug(k) and ûg(k). The
results of the best-performing model (N = 50, α = 0.01,
Ttrain = 10) are shown in Table 3 using IAIF as a reference
(implemented in Aalto Aparat using default parameters and the
recommended value of 4 formants [37]). The performance of
both IAIF and the above BiLSTM on the VTL test subset (lim-
ited to the most similar German vowels to the ones contained
in OPENGLOT) is also listed. A representative sample of the
estimated glottal flow signals is shown in Figure 1.

0.04 0.045 0.05 0.055 0.06

0.208 0.21 0.212 0.214

0.04 0.045 0.05 0.055 0.06
Time [s]

Ground truth

IAIF

BiLSTM

Figure 1: Examples of glottal flow estimations (top to bottom):
average error (repository I, [O], creaky, f0 = 100 Hz), highest
error (repository II, [u], ξ02 = 0.03 cm, f0 = 220 Hz), and
lowest error (repository III, [a], f0 = 100 Hz).

Considering the within-domain case first (evaluation on the
VTL test subset), it is evident that the proposed model was
able to generalize quite well from relatively little training data.
Since the model was selected based on the cross-domain per-
formance, the ideal amount of training data was much less than
what was expected (just 10 min) but the model still achieved
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Table 3: Performance of the proposed BiLSTM model and the reference algorithm IAIF. Results are shown as mean ± std (median).

Proposed BiLSTM IAIF
|∆OQ| r (ug(k), ûg(k)) |∆OQ| r (ug(k), ûg(k))

VTL test subset
/a, e, i, o, u, E/

0.0291± 0.0177(0.0269) 0.9501± 0.037(0.9612) 0.0879± 0.0489(0.0765) 0.8451± 0.0516(0.8475)

OPENGLOT
Repository I 0.0461± 0.0461(0.0361) 0.9128± 0.0785(0.9413) 0.0227± 0.0627(0.0105) 0.9756± 0.0174(0.9801)

Repository II 0.0671± 0.0684(0.0359) 0.9167± 0.0608(0.9347) 0.0206± 0.0164(0.0171) 0.9782± 0.0204(0.9878)

Repository III 0.1937± 0.0953(0.1758) 0.8578± 0.1010(0.8854) 0.2166± 0.0421(0.2029) 0.8657± 0.0304(0.8683)

this rather high within-domain accuracy. This appears to vali-
date the assumption that cross-domain training is a suitable ap-
proach to compensate the lack of reference in the desired do-
main if proper care is take to underfit the training domain data.
In the cross-domain case, the performance of the BiLSTM was
slightly worse for repository I and II of OPENGLOT compared
to IAIF and slightly better in repository III. However, as dis-
cussed in subsection 2.2, the OPENGLOT corpus makes some
of the same assumptions as IAIF regarding source-filter separa-
bility and the all-pole structure of the vocal tract filter. In natural
speech, both of these assumptions are routinely violated. Voiced
consonants, for example, have a glottal and a supraglottal exci-
tation and the transfer functions of nasal sounds contain zeros.
As shown in Figure 2, the signal estimated by IAIF was much
less accurate compared to the proposed model in such cases,
even in synthetic speech.

Time [s]

0.38 0.39

/ n /

0.23 0.24

/ z /

Ground truth

IAIF

BiLSTM

1.08 1.10 1.12 1.16 1.181.14

/ f / / a /

Figure 2: Example glottal flow segments for the phonemes /n,
z/ and an unvoiced/voiced transition from the VTL test set of
synthetic speech

Furthermore, the degree of realism in the signal genera-
tion technique was higher in repository III, where the proposed
model outperformed IAIF. A qualitative analysis of the glot-
tal flow estimations based on continuous speech signals from
the BITS corpus by both the proposed BiLSTM and IAIF (this
time as implemented in COVAREP [38] using default settings)
further support this observation: Since no objective reference is
available for the natural data, we instead inspected only a few
representative examples. Figure 3 shows results for the same
sounds examined in Figure 2. As before on the synthetic data,
the estimations by IAIF seem rather unrealistic while the pro-
posed model’s output is more in line with what the EGG data
suggests.

5. Conclusions and outlook
The proposed BiLSTM model, trained on articulatorily synthe-
sized speech to estimate the glottal flow from a given speech

2.86 2.88 2.9 2.92 2.94 2.96
Time [s]

/ f / / a /

5.05 5.06

/ z /

EGG

IAIF

BiLSTM

6.12 6.13

/ n /

Figure 3: Example glottal flow and EGG segments for the
phonemes /n, z/ and an unvoiced/voiced transition from the
BITS corpus of natural speech

signal, outperformed the state-of-the-art IAIF slightly on phys-
ically synthesized speech data of short, isolated vowel sounds.
On continuous natural speech, a qualitative analysis showed that
the proposed model produces much more plausible glottal flow
signals than IAIF. While IAIF requires the manual specifica-
tion of some parameters based on the speech signal content, the
BiLSTM model has no free parameters and can process contin-
uous, arbitrary speech input including voiced/unvoiced transi-
tions without any user intervention. Due to the lack of natural
glottal flow reference data, the objective accuracy of the estima-
tions cannot be evaluated. Even though EGG data is available,
an EGG waveform is very different from the shape of the true
glottal flow. However, future work should analyze metrics that
can be derived from an EGG signal, e.g. the glottal closure
and glottal opening instants. More applications for the cross-
domain training approach, for example the estimation of phone
durations or intonation contours, should also be explored.
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