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Abstract. The way infants use auditory cues to learn to speak despite
the acoustic mismatch of their vocal apparatus is a hot topic of scientific
debate. The simulation of early vocal learning using articulatory speech
synthesis offers a way towards gaining a deeper understanding of this
process. One of the crucial parameters in these simulations is the choice
of features and a metric to evaluate the acoustic error between the syn-
thesised sound and the reference target. We contribute with evaluating
the performance of a set of 40 feature-metric combinations for the task
of optimising the production of static vowels with a high-quality artic-
ulatory synthesiser. Towards this end we assess the usability of formant
error and the projection of the feature-metric error surface in the nor-
malised F1-F2 formant space. We show that this approach can be used
to evaluate the impact of features and metrics and also to offer insight
to perceptual results.
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1 Introduction

The way infants learn to speak is a hot topic of scientific debate. The process is
likely driven by the auditory perception of language in their surroundings [8,23],
which is reinforced by the fact that children born blind learn how to speak on
their own [16], while those born deaf cannot [14]. Albeit, the absence of visual
cues does hinder proper articulation of phonemes such as /u/, which has been
found less rounded in the blind [11]. Still, it is a mystery how infants use auditory
cues to generate matching vocalisations in light of the differences in the size of
their vocal apparatus [4,5,12].
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One approach towards gaining a deeper understanding of this process is
through the simulation of early vocal learning based on articulatory speech syn-
thesis [7,18–20]. In its basic form this approach relies on the optimisation of
the parameters of the synthesiser, based on the acoustic comparison of the syn-
thesised speech to a template [18], but some have used it as a part of more
complex models of speech motor control [15]. Using such an experimental setup
researchers have successfully simulated the need of visual cues of lip rounding to
synthesise high quality rounded vowels [13]. Others have used it to test hypothe-
ses that the burden of speaker normalisation during vocal learning is on the
adults [7,12], but synthetic speech simulated using adult mimicry of babbles
yielded low vowel identification scores [20]. Some have successfully simulated
vocal learning of syllables [18,24].

One crucial part of these systems is the choice of features used to represent the
speech signals and the distance metric used to compare them to determine the
articulation error that drives learning. Formant error has been used extensively
for simulations of vowel learning [15,20], with another common approach being
the use of auditory filterbanks [7] and especially Mel-Frequency Cepstral Coef-
ficients (MFCCs), perhaps owing to their predominance in Automatic Speech
Recognition (ASR) [17,25]. Prom-on et al. used the sum of squares MFCC error
as a metric equivalent to the Mean Square Error (MSE) for optimisation [18,19].
Gao et al. used 13 MFCCs augmented by a probability of voicing and their 1st
and 2nd derivatives in conjunction with the cosine distance [6]. Other more
advanced approaches have used models of peripheral processing of the cochlea
and auditory memory [13].

Despite of its importance this issue has not been analysed in detail and there
is no consensus on which features and metric to use for simulating vocal learn-
ing, both based on their performance and on their physiological plausibility.
We contribute here through the evaluation of 40 feature-metric pairs for the
task of optimising the production of vowel targets with an articulatory synthe-
siser. Specifically, our goal is to explore the impacts of: i) high frequency (HF)
emphasis in the feature extraction process, ii) feature normalisation, iii) the use
of different distance metrics, and iv) the use of different features. Towards this
end we assess the usability of two objective methods in this evaluation: the for-
mant error of the optimised sounds in the normalised F1-F2 formant space, and
the projection of the feature-metric’s error surface in this space. In addition, we
explore if these methods can be used to augment or interpret perceptual scores.

2 Methodology

2.1 Dataset

Vocal Tract Model. We used the VocalTractLab (VTL) API to synthesise
the speech waveforms [1,2].1 VTL is an articulatory synthesizer that synthesises

1 VTL v.2.2 http://www.vocaltractlab.de/.

http://www.vocaltractlab.de/
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audio using acoustic simulations based on the crossarea of the vocal tract cal-
culated from a geometrical 3D vocal tract model. The model is built from MRI
data of a German male speaker, and is controlled by 20 parameters.

Fig. 1. Formant spread of the synthesised VTSs for the adult (left) and the child model
(right) in normalised F1-F2 space. Target vowels are represented with colour markers.

Synthesised Data. Two models were used in the analysis: i) the original adult
model based on the MRI scans of a human subject, and ii) a prototype child
model created as a scaled down version of the adult model [3].

We generated in total 1 million vocal tract shapes (VTSs) for both models by
random sampling of 17 of the 24 VTL vocal tract parameters in the parameter
ranges of the speaker models: hyoid x and y position (HX, HY), jaw x and
angle (JX, JA), lip protrusion and distance (LP, LD), velum shape (VS), tongue
centre, blade and tip x and y (TCX, TCY, TBX, TBY, TTX, TTY), and the
four tongue side vertical positions (TS1, TS2, TS3, TS4) [1]. We generated the
500,000 VTSs for each model in 5 runs with 100,000 iterations each. All runs
started from the neutral vocal tract position corresponding to a central schwa.

We prefiltered the VTSs based on the positional constraints for the tongue
parameters and vocal tract closure. We then extracted F1 and F2 from the mag-
nitude of the volume velocity transfer function using a peak picking algorithm
and postfiltered the VTSs based on the expected F1 and F2 ranges [9]. Finally, we
postfiltered the synthesised speech signals based on their low-frequency energy
to include only VTSs that allowed sustained phonation with VTL’s acoustical
coupling.

This rigorous selection process resulted with 15,229 (3% of the original VTS
samples) for the adult model and 8,510 (1.7%) for the child model.2 Figure 1
shows the formant spread for the two speaker models with the target vowel’s

2 Supplementary materials – https://evoc-learn-group.gitlab.io/feature-metric.

https://evoc-learn-group.gitlab.io/feature-metric
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formant frequencies superimposed. We can see a well formed vowel triangle in
both cases, with a larger spread for the child model in line with the increased
variability seen in children [9].

Target Vowel Templates. The human speaker static vowel target tem-
plates comprise a single renditions of the five vowels: /a/, /e/, /i/, /o/, and /u/,
as used in standard Macedonian, spoken by a native male speaker. This limited
set provides ample coverage of the formant space as can be seen in Fig. 1.

2.2 Features and Metrics

Two well established speech features were extracted using LibROSA3 [10] - the
Log Mel Spectrogram and the MFCCs. The Mel filter bank used to extract the
features in both cases comprised 26 filters with a maximum frequency of 10 kHz.
From these, 12 and 22 MFCCs were extracted. MFCC12 was meant to emulate
the usual ASR setup [25], while the richer MFCC22 was taken at the upper
limit beyond which speaker specific information is captured [21]. In addition, we
included high frequency emphasis through preemphasis and cepstral liftering, as
commonly used in ASR. Finally, we also applied Cepstral Mean and Variance
Normalisation to the MFCC based features using the means and variances of the
features extracted from the synthesised sounds with the final set of VTSs. For
the target speaker we used the recordings of the vowel targets. For each feature
type we calculated the errors using four distance measures: the Mean Square
Error (MSE), the Cosine distance, and the Manhattan and Chebyshev distances
as extremes of the Minkowski distance. All of this amounted to a total of 40
feature-metric pairs.

2.3 Formant Error

The formant errors were calculated using the Euclidean distance in the nor-
malised F1-F2 space in order to compensate for the differences in the formant
space between the models and the target speaker. We normalise the models’ and
the target’s formant values using z-score normalisation based on the speaker
specific means and standard deviations. Some 300 additional realisations of the
five vowels were used for extracting the target’s formant statistics.

In order to gain a better estimate of the feature-metric pair performance, we
also split the selected VTSs into their original 5 runs that start from the neutral
schwa position. Each split keeps ample coverage of the F1-F2 space akin to the
one shown in Fig. 1. This gives us 5 error minima for each of the 5 vowels, or 25
formant errors in total for each feature-metric pair.

2.4 Formant Space Error Surface Projection

For each feature-metric pair and each of the target vowels we also calculate the
error surface in the normalised formant space. We use these error surfaces to gain
3 LibROSA v.0.7.1 https://librosa.github.io/.

https://librosa.github.io/
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additional insight on the way the error calculated with the metric in the feature
space relates to the formant space. We first calculate the error for every synthe-
sised sound with each feature-metric pair for every vowel. For each parameter
combination we scale the errors to 1 by dividing them by the maximum error.
Next, we bin and average the errors in the F1-F2 space with 30 bins for each
formant in the normalised range −3 to 3. We then use these average errors to
calculate any missing data using cubic interpolation.

Fig. 2. Aggregated impact of high-frequency emphasis.

2.5 Listening Tests

To evaluate the perceptual relevance of the feature-metric pairs we design a
MUSHRA (MUltiple Stimuli with Hidden Reference and Anchor) [22] listening
test in which we ask listeners to evaluate the phonetic accuracy of the syn-
thesis that was selected as optimal by the feature-metric pairs for each vowel
and each of the two models. To optimise the listening tests we selected 10 of
the feature-metric pairs based on their use in previous research and their for-
mant error performance: MFCC12 MSE, MFCC12 normalised MSE, MFCC12
COS, MFCC12 normalised COS, MFCC22 MSE, MFCC22 normalised MSE,
MFCC22 COS, MFCC22 normalised COS, Log Mel spectrogram MSE, and Log
Mel Chebyshev. As negative anchors we use synthesised vowels different from
the reference one. We distributed the test to 10 speech researchers, of which 4
native speakers of Macedonian, and an additional 4 native speakers. For each
rater, we normalise the scores per model and vowel in the range 0–1, using the
scores given for the anchor and the reference. We clip all negative scores to 0.



232 B. Gerazov et al.

3 Experiments

4 Results

4.1 Formant Space Analysis

Impact of High Frequency Emphasis. The obtained formant error when
using HF emphasis aggregated across the vowels, metrics, normalisation, and
grouped by base feature for each model is shown in Fig. 2. We can see that the
use of HF emphasis on average increases the error as measured by the distance
to the target in the normalised F1-F2 space.

Impact of Normalisation. The formant error results do not reveal a clear
cut impact of normalisation in the optimisation task. Instead we investigate the
error surface projections of MFCC12 MSE for /e/ and /u/ for the adult and
child models shown in Fig. 3. We can see that the impact of normalisation is
more pronounced for /u/. Indeed, while it only leads to a loss of the pronounced
minimum, for the child model the effects of normalisation are severe, shifting the
global minimum to a different formant location altogether.

Impact of the Metrics. The averaged impact of the metrics for all the vowels
for the base features without HF emphasis and normalisation is shown in Fig. 4.

Fig. 3. MSE surface comparison for the target vowels /e/ (above line) and /u/ (below
line) for the adult (top row) and child (bottom row) models for (left to right): MFCC12,
MFCC12 N, MFCC12 COS, MFCC12 N COS, MFCC22 MSE, and Log Mel MSE.
Target formants are superimposed with white markers and the formants of the signal
with minimum error with a red marker. (Color figure online)
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Fig. 4. Impact of the different metrics on formant error for the base features without
HF emphasis or normalisation.

Fig. 5. Impact of the different base features on formant error.

Fig. 6. Normalised scores from the listening test.
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Fig. 7. The formants of the optimised base features without normalisation used in the
listening test for the adult (left) and child model (right).

We can see that although their performance is close, MSE offers smaller error
on average.

Impact of the Features. Figure 5 shows the averaged impact of the base fea-
tures without HF emphasis and normalisation for the different vowels. We can
see that the different base features work consistently across the vowels and the
two models. There are cases where MFCC12 work better (adult /a/ and /u/ and
child /a/), but also worse (child /o/). This can be explained by the similarity of
their error surfaces, as seen in Fig. 3.

4.2 Listening Tests

The overall results of the listening tests are shown in Fig. 6. We can see that the
scores between raters are mostly consistent. A stronger indicator is that there are
feature-metric pairs that clearly resulted with a phonetically erroneous synthesis.
It is also indicative that there is a strong and inconsistent impact of normalisa-
tion on the different vowels. Specifically, normalisation seems to systematically
improve performance for /e/, while impairing it for /u/ for both models. This
phenomenon can be readily explained by the error surface projections for these
two vowels, shown in Fig. 3. We can indeed see that normalisation shifts the
global minimum of the error closer to the formant target /e/ and away from
/u/.

If we focus on the scores obtained by the base features without normalisation
and with the MSE metric, we can see that the rater scores are consistent for the
different vowels, with some exceptions, which is in line with our observations
of the formant error and their error surface similarity. In fact, we can see in
Fig. 7 that most of these have selected the same synthesised vowel. Moreover,
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the relative distance in formant space correlates well with the perceptual scores,
i.e. the low scores for /e/ in both models and /a/ in the child model, as well as
the worse result obtained for MFCC12 for the child model /o/, and its improved
score for the adult /a/ and /u/.

If we examine the selected formant position for adult /e/ and compare it
to the error surface shown in Fig. 3, we can see that it does not coincide with
the expected global minimum. This is due to the variance of the binned errors
around the calculated mean not shown here because of space limitations.

5 Conclusion

While formant error does not tell the whole story when it comes to the acoustic
realisation of vowels, our findings show that normalised formant distance cor-
relates well with perceptual scores of vowel quality. We have also shown that
the projection of the error surface in the normalised F1-F2 space can serve to
evaluate feature-metric pairs and predict their perceptual performance for the
optimisation of vocal tract parameters in simulations of vocal learning. More-
over, these projections show wrong our intuition that there is a straightforward
correspondence between error optimisation in the feature space and minimisation
of formant error.

From the evaluated feature-metric pairs we have demonstrated similarity in
the formant space error surfaces, formant errors and perceptual scores between
the MFCC12, MFCC22 and Log Mel base features. None of them has demon-
strated superiority in the task of vowel production optimisation. The perfor-
mance of the different metrics is also similar, with MSE giving slightly better
average results. High frequency emphasis has shown to increase formant error
and should not be used for the task of vowel learning. However, it might have a
positive impact on consonant learning. Finally, normalisation has been shown to
have a contradicting and severe impact on the error surface dynamics - improving
it for some vowels and degrading it for others.
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