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Abstract—Besides the recognition of audible speech, there
is currently an increasing interest in the recognition of silent
speech, which has a range of novel applications. A major
obstacle for a wide spread of silent-speech technology is the
lack of measurement methods for speech movements that are
convenient, non-invasive, portable, and robust at the same time.
Therefore, as an alternative to established methods, we examined
to what extent different phonemes can be discriminated from
the electromagnetic transmission and reflection properties of the
vocal tract. To this end, we attached two Vivaldi antennas on
the cheek and below the chin of two subjects. While the subjects
produced 25 phonemes in multiple phonetic contexts each, we
measured the electromagnetic transmission spectra from one
antenna to the other, and the reflection spectra for each antenna
(radar), in a frequency band from 2-12 GHz. Two classification
methods (k-nearest neighbors and linear discriminant analysis)
were trained to predict the phoneme identity from the spectral
data. With linear discriminant analysis, cross-validated phoneme
recognition rates of 93% and 85% were achieved for the
two subjects. Although these results are speaker- and session-
dependent, they suggest that electromagnetic transmission and
reflection measurements of the vocal tract have great potential
for future silent-speech interfaces.

Index Terms—Silent-speech interface

I. INTRODUCTION

WHILE the recognition of audible speech by means of
acoustic signals is well established, the recognition

of silent speech, i.e., speech without or with hardly audible
sound, is a rather new field of research [1]. Silent-speech
recognition is still at an experimental stage, but has the
potential for a range of new applications. For example, it
could enable silent telephone conversations or silent queries
to spoken dialog systems, which would provide privacy and
prevent the disturbance of nearby people in public places. In
contrast to conventional speech recognition, this would also
work under very noisy conditions. In the medical domain,
silent speech technology could provide a substitute voice for
people whose larynx has been removed. For these people, the
silent speech movements could be captured and converted into
audible speech by means of speech synthesis.

Because the recognition of silent speech relies on the
acquisition and interpretation of speech-related biosignals, it
is also referred to as biosignal-based speech recognition [2].
Potentially useful biosignals are brain signals, muscle sig-
nals, and movement signals, all of which require dedicated
measurement methods. For a wide spread and acceptance of
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silent speech technology, the methods for the acquisition of
the according biosignals should be non-invasive and easy to
apply. Furthermore, the recording devices should be portable
and the signals should be robust against distortions and allow
a good discrimination of speech sounds.

Currently, the main measurement techniques for silent-
speech recognition include permanent magnet articulography
(PMA) [3], electromagnetic articulography (EMA) [4], video
imaging of the face [5], video imaging of the lips in com-
bination with ultrasound (US) imaging of the tongue [6],
[7], [8], ultrasound Doppler sensing of facial movements
[9], surface electromyography (sEMG) [10], [11], [12], [13],
electropalatography (EPG) [14], electro-optical stomatography
(EOS) [15], [16], intercranial wire microelectrodes [17], and
electrocorticography (ECoG) [18]. Besides the recognition of
speech, many of these methods have also been applied to
the direct synthesis of speech, i.e., biosignal-based speech
synthesis, which requires the mapping of the biosignals to
vocoder parameters. Examples are the direct synthesis based
on PMA signals [19], [20], [21], EMA signals [22], tongue US
signals [23], video images of the face [24], ultrasound Doppler
signals of facial movements [25], and EMG signals [26], [27],
[28].

Many of the above measurement methods (PMA, EMA,
EPG, EOS, and ECoG) are invasive and hence not suited for a
wide spread of silent speech interfaces except in the medical
domain. Surface EMG, ultrasound Doppler sensing of facial
movements, and the (ultrasound) imaging of the tongue and
the lips are non-invasive methods, but they have drawbacks
of their own. One of the main problems of sEMG is the
inter-session variability, which is caused by the sensitivity of
sEMG measurements to the electrode-skin impedance and to
placement variations of the sensors [29], among others. The
main problems with US imaging of the tongue are that the
images are rather noisy and the fixation of the ultrasound probe
at a constant position is awkward [8]. Imaging of the face or
lips using an external camera, as well as ultrasound Doppler
sensing of facial movements, have the drawback that the data
provide very limited information about the internal state of the
vocal tract.

In contrast to the above methods, electromagnetic (EM)
waves have been rarely considered to acquire speech-related
data. The first who applied EM-wave sensors to the monitoring
of speech movements were Holzrichter et al. in 1998 [30].
They used low-power radar sensors that were placed close to
the skin of the face and worked at frequencies centered at
2.3 GHz in order to monitor the motion of individual organs
like the tongue or the vocal folds. They proposed the use
of these sensors for silent speech recognition, but did not
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Fig. 1. Setup of the measurement system.

make actual recognition experiments. Their speech sensing
approach was presented in an additional paper in 2009 [31],
but seems to have gone rather unnoticed by the speech research
community. More recently, Eid and Wallace [32] presented an
ultra-wideband (UWB) radar system (500 MHz to 10 GHz)
for speech sensing using a single antenna that was placed a
few centimeters in front of the mouth. In a proof-of-concept,
they showed that it was possible to discriminate 10 words
spoken by a single speaker by template matching using the
complex reflection coefficients. A similar radar system for
contactless silent speech recognition was proposed in 2016
by Shin and Seo [33]. They used a commercial off-the-shelf
impulse-radio UWB radar module with separate transmitter
and receiver antennas that were placed 10 cm in front of the
face. In an experiment with five speakers, they achieved an
average speaker-dependent word recognition rate of 85 % for
10 isolated words.

In the present study, we propose a UWB speech sensing
system that uses two antennas that are placed directly on the
cheek and below the chin of a speaker. The state of the vocal
tract is captured in terms of the transmission spectrum between
the two antennas and the individual reflection spectra of the
antennas, for a frequency band of 2-12 GHz. These spectral
data are used as “articulatory features” to train two simple
classifiers for the discrimination of phonemes. It is shown
that a linear discriminant analysis based on these features can
achieve very high phoneme recognition rates despite strong
contextual variation of the speech sounds.

II. METHOD

A. Data Acquisition

The goal of this study was to find out to what extent differ-
ent phonemes can be discriminated from the electromagnetic
transmission and reflection properties of the vocal tract. To
this end, two identical flat foil antennas (45 × 40 mm2) were
attached to the speaker’s face using adhesive tape: one below
the chin and one on the right cheek, as illustrated in Fig. 1.
The antennas were modified antipodal Vivaldi antennas on

45 mm
40 m

m
a) b)

Fig. 2. The antipodal Vivaldi antenna that was used for the experiments. a)
Photo of the antenna. b) Layout with the copper tracks on the front side (red)
and the back side (matte red).

a flexible substrate (see Fig. 2) that were optimized in size,
weight, and bandwidth for on-tissue applications [34].

Both antennas were connected to the two ports of a dual-
port vector network analyzer (PNA Series Network Analyzer
E8364B by Agilent Technologies) that measures signal am-
plitude and phase in terms of complex scattering parameters.
For the measurements, we used sweep signals with a power
band of 2-12 GHz. The lower band limit of 2 GHz was chosen
according to the size of the antenna (lower frequencies would
have required larger antennas), and the upper band limit of
12 GHz was chosen such that the attenuation of the EM waves
in the tissue became not too strong.

The network analyzer was configured to capture an articula-
tory state of the vocal tract as follows. First, antenna 1 emitted
a linear sweep signal (2-12 GHz) with a duration of 6.03 ms
and a power of 1 mW (which is far below the transmission
power levels of current smartphones). The response of the head
and vocal tract to this signal was captured by both antenna 1
(scattering parameter S11(ω) with the angular frequency ω)
and antenna 2 (scattering parameter S21(ω)). Then, antenna 2
emitted the same source signal and the response was recorded
by both antenna 1 (scattering parameter S12(ω)) and antenna
2 (scattering parameter S22(ω)). The total recording time
for one vocal tract configuration was about 12 ms. From
the perspective of the network analyzer, the vocal tract is a
passive two-port network that is reciprocal with respect to its
transmission properties, i.e., the frequency-dependent damping
and delay of the signals from one antenna to the other do not
depend on the direction, i.e., S12(ω) = S21(ω). Therefore,
one articulation measurement consisted of the two reflection
measurements S11(ω) and S22(ω), and the transmission mea-
surement S21(ω), i.e., a total of three complex spectra. Each
individual spectrum was sampled in terms of 201 discrete
frequency components (which is the default setting of the
network analyzer), i.e., S11/22/21(n), where n = 1 . . . 201
is the frequency index. Hence, 603 complex numbers were
obtained during each measurement.

The measurement of the three spectra was triggered by
a keystroke on a laptop computer that was connected to
the network analyzer via a local area network (LAN). After
each measurement, the spectral data obtained by the network
analyzer were displayed on the network analyzer screen, and
transferred to and saved on the laptop computer. Due to
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TABLE I
PSEUDOWORDS OF THE CORPUS, WHICH WERE PRODUCED FOR ALL

CONTEXT CONSONANTS C ∈ {/b,d,g,l,ö,f,s,S,m,n/} AND ALL CONTEXT
VOWELS V ∈ {/a:,e:,i:,o:,u:,E:,ø:,y:/}. THE UNDERLINED TARGET

PHONEMES WERE SUSTAINED FOR 3 SECONDS TO ALLOW STABLE
MEASUREMENTS.

Tense vowels Lax vowels Consonants

/Ca:d@/ /CIt@/ /V bV /
/Ce:d@/ /CEt@/ /V dV /
/Ci:d@/ /Cat@/ /V gV /
/Co:d@/ /COt@/ /V lV /
/Cu:d@/ /CUt@/ /V öV /
/CE:d@/ /CYt@/ /V fV /
/Cø:d@/ /Cœt@/ /V sV /
/Cy:d@/ /V SV /

/V mV /
/V nV /

the relatively slow preprocessing and display of the acquired
signals on the network analyzer, each individual measurement
(from the keystroke to the storage of the data on the laptop)
took about 1 s. Therefore, in order to obtain unbiased spectra,
the subjects were asked to sustain the target phonemes in
the pseudowords (see below) for about 3 s. For the plosives,
which are highly transient in nature, the subjects were asked to
sustain the vocal tract configuration with the maximal degree
of supraglottal closure. As soon as a subject fully articulated
the target phoneme, the measurement was manually triggered
by the experimenter.

The main difference between our system and the previously
proposed EM-based systems [31], [33], [32] is that we not only
measured the reflections of EM waves from the vocal tract
(radar mode), but in addition the transmission of the EM waves
through the vocal tract from one antenna to the other. The
results (Sec. III) demonstrate that the transmission spectrum
alone contains more information for the discrimination of
phonemes than individual reflection spectra. This advantage
comes at the expense that the antennas need to be close/in
contact to the skin, while the previous EM-based systems
worked completely contactless.

B. Subjects and Corpus

Two male native German speakers (26 and 39 years old)
participated in the experiment. None of them reported any
history of speech or hearing disorders. The task of the
subjects was to produce 230 utterances (audible speech),
each consisting of the German article “Eine” followed by
a pseudoword that contained a target phoneme. In order to
capture the articulatory variation of the speech sounds, each
target phoneme was embedded in multiple pseudowords with
different context phonemes. The list of pseudowords is given
in Table I. The target phonemes were the German tense
vowels /a:,e:,i:,o:,u:,E:,ø:,y:/, the lax vowels /I,E,a,O,U,Y,œ/,
and the consonants /b,d,g,l,ö,f,s,S,m,n/. From the consonants
that come in voiced-voiceless pairs, only either the voiced or
the voiceless one has been included in the target phoneme
set, because the voicing information is not available in silent

speech. Each target vowel occurred in the context of each
of the consonants /b,d,g,l,ö,f,s,S,m,n/, and each target con-
sonant occurred in the context of each of the (tense) vowels
/a:,e:,i:,o:,u:,E:,ø:,y:/. Hence, in total we measured 10 samples
of each of 15 vowels, and 8 samples of each of 10 consonants
per speaker. Each speaker produced all utterances within the
same session, i.e., with identical antenna placements.

C. Classification Experiments

To assess the possibility to discriminate the 25 target
phonemes by means of their EM spectra, we applied two
classification methods: k-nearest neighbors (kNN) as a non-
parametric classification method, and linear discriminant anal-
ysis (LDA) as a parametric classification method. These rather
basic classifiers were selected because they usually work well
with rather small amounts of data like those available in the
present study (compared to deep learning methods), and they
have no hyperparameters (LDA) or just one hyperparameter
(kNN) that need to be tuned for the best possible results.
Here, the functions fitcknn and fitcdiscr of MATLAB
R2016b were used as implementations of kNN and LDA,
respectively, using their default settings (apart from the number
of neighbors for the kNN method, see below). Each of these
methods was trained and tested with different feature vectors
as input. To assess the contribution of different subsets of
spectral data to the classification performance, the following
feature vectors were examined:

• the 201 spectral magnitudes of S11(n),
• the 201 spectral magnitudes of S22(n),
• the 201 spectral magnitudes of S21(n),
• the 402 spectral magnitudes of S11(n) and S22(n),
• the 402 spectral magnitudes of S11(n) and S21(n),
• the 402 spectral magnitudes of S22(n) and S21(n),
• the 603 spectral magnitudes of S11(n), S22(n), and

S21(n).
For the same combinations of S11(n), S22(n), and S21(n)

as in the list above, we also tested feature vectors formed of the
real and imaginary parts of the spectral components, instead of
the spectral magnitudes, to find out whether the spectral phase
contributes to the classification performance. These feature
vectors had twice the length of the corresponding magnitude
feature vectors. Finally, to find out whether the lower or the
upper part of the 2-12 GHz range contributes more to the
classification performance, we applied the LDA to feature
vectors that contained only the first 100 spectral magnitudes
of S11, S22, and S21 (2-7 GHz range), and only the last 100
spectral magnitudes (7-12 GHz range).

In the recorded data, the magnitudes of the transmission
spectra S21(n) were significantly smaller than the magnitudes
of the reflection spectra S11(n) and S22(n). To ensure that
all features of the input vectors had a comparable range
(and hence a comparable weight for the classification), all
transmission spectra S21(n) were scaled up by a factor of
400.

The performance of both classifiers in combination with all
types of feature vectors was assessed by leave-one-out cross-
validation. This means that for each subject and combination
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Fig. 3. a) Transmission spectra S21(n) (with 201 frequency points each) for
each of the 10 samples of the vowels /a:/ (black) and /y:/ (gray) of speaker 1.
b) Transmission spectra S21(n) for each of the 8 samples of the consonants
/b/ (black) and /g/ (gray) of speaker 1.
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Fig. 4. a) Reflection spectra S11(n) (with 201 frequency points each) for
each of the 10 samples of the vowels /a:/ (black) and /y:/ (gray) of speaker
1. b) Reflection spectra S11(n) for each of the 8 samples of the consonants
/b/ (black) and /g/ (gray) of speaker 1.

of classifier and feature vector, each of the 230 speech items
has been individually used for testing the classifier trained
with the 229 other items. The recognition rate in percent was
calculated as (x/230) · 100%, where x was the number of
correctly classified items. For the kNN classifier, the number of
neighbors k was systematically varied for each feature vector
condition and only the best results are reported.
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Fig. 5. Vocal tract contours of a male speaker producing the consonant /b/
in the context of the vowels /a:/ (light gray), /i:/ (black), and /u:/ (dark gray).

III. RESULTS AND DISCUSSION

A. Visual Data Analysis

As representative examples of the captured data, Fig. 3 and
4 show magnitude spectra from transmission and reflection
measurements, respectively. Figure 3a shows the magnitude
spectra of the transmissions from antenna 1 to antenna 2 for the
10 samples of the vowels /a:/ (black) and /y:/ (gray, as in the
German word “Tüte” /ty:t@/, engl.: bag), and Fig. 3b shows the
transmission spectra for the 8 samples of the consonants /b/
(black) and /g/ (gray). Figure 4 shows the magnitude spectra
of the reflections S11(n) for the same phonemes. The spectral
differences between /a:/ and /y:/ are well visible, especially
for |S21(n)|, while the spectral variation of the samples of
the same vowel are relatively small. The reason for the rather
pronounced spectral differences between /a:/ and /y:/ is that
they differ along multiple articulatory dimensions, e.g., with
respect to tongue height, lip protrusion and lip opening. For
vowels that are more similar from an articulatory point of view,
the spectral differences were accordingly less pronounced. In
contrast to the vowels, the context-dependent variation of the
consonant spectra was generally stronger, both for transmis-
sion and reflection spectra. The stronger spectral variation
of the consonants is most likely caused by their stronger
coarticulatory variation. As an example, Fig. 5 shows the
midsagittal vocal tract shapes of /b/ spoken in the symmetric
context of the vowels /a:/, /i:/, and /u:/, as determined from
dynamic magnetic resonance images of the vocal tract [35].
For these /b/ samples, the only common articulatory feature
are the closed lips, while the tongue position strongly varies
and essentially mirrors the tongue shape of the context vowel.

For the further visual analysis of the data, we performed
a dimensionality reduction of the high-dimensional spectra
to a two-dimensional map. Initially, we performed a linear
principal component analysis and mapped the feature vectors
on the first two principal components. However, in the result-
ing 2D plot, the speech samples poorly grouped according to
their phoneme class. This suggested that the data rather lie
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Fig. 6. 2D visualization of the 603-dimensional phone feature vectors (concatenated magnitude spectra of the one transmission measurement and the two
reflection measurements of speaker 1) using the method of t-Distributed Stochastic Neighbor Embedding (t-SNE) [36]. There are 10 samples for each vowel
and 8 samples for each consonant. For clarity, vowels (left) and consonants (right) are shown separately.

on a non-linear manifold within the high-dimensional feature
space. Accordingly, we performed a t-Distributed Stochastic
Neighbor Embedding (t-SNE, [36]), which is the state-of-the-
art for non-linear dimensionally reduction, using the MATLAB
implementation by van der Maaten [37]. Because t-SNE is
a stochastic algorithm, the result depends on the random
initialization of the map points and somewhat differs after each
run. A representative result for our data is shown in Fig. 6,
where the data points for vowels and consonants have been
plotted in two separate maps for clarity. The input data were
the 603-dimensional feature vectors formed of the magnitude
spectra |S11(n)|, |S22(n)|, and |S21(n)| of speaker 1. As
Fig. 6a shows, the samples of the individual vowels form
clusters. There is a certain overlap of clusters, but for these,
the according phonemes have similar articulatory features. For
example, the rounded vowels, the unrounded vowels, and the
lax vowels are located in well separable regions of the map.
As shown in Fig. 6b, the consonants do not cluster as well
as the vowels. This is likely due to the stronger contextual
variation of the articulation of consonants, as discussed above.
Nonetheless, the positions of the consonants on the map do
hardly overlap with the vowel samples.

B. Classification Results

The accuracy of the phoneme classification using the two
methods LDA and kNN in combination with the different
high-dimensional feature vectors are summarized in Fig. 7.
These plots allow a number of observations. With regard to
the spectral data included in the feature vectors, recognition
rates usually increase when more data is included. The highest
recognition rates are achieved when S11(n), S22(n), and
S21(n) are jointly used. This means that all three spectra pro-
vide unique information that help to discriminate the speech
sounds. However, the contribution of the three spectra to the
recognition rate differs. For the feature vectors that contain the

data of only S11(n), only S22(n), or only S21(n), phoneme
recognition rates are generally highest for S21(n). This means
that the transmission spectrum contains the most important
information for phoneme recognition. When any two spectra
or all three spectra are combined to form the feature vector, the
recognition rates are higher than for the included individual
spectra alone. Furthermore, it is generally beneficial to use not
only the spectral magnitude as features (dark gray bars), but
the full spectral information in terms of the real and imaginary
parts of the spectral components (light gray bars). This is
especially evident in the LDA results when only one individual
spectrum is used for the feature vector. When two or all three
spectra are used as features, the benefit of using the real and
imaginary parts as separate features becomes less pronounced.
For the kNN classifier, the recognition rates may even become
worse (here for speaker 2).

With regard to the classification method, the performance
depends on the dimensionality of the feature vectors. For the
feature vectors with the lowest number of dimension, i.e.,
with the 201 spectral magnitudes of either S11(n), S22(n), or
S21(n), kNN performs better than LDA. For feature vectors
that combine two or three spectra and/or use the real and imag-
inary parts of the spectral components as separate dimensions,
LDA generally achieves a higher recognition rate than kNN.
Hence, while kNN suffers from the “curse of dimensionality”
for an increasing number of feature space dimensions [38],
LDA benefits from additional dimensions as they facilitate the
detection of linear hyperplanes that separate the classes.

With regard to the two examined frequency bands, the
feature vectors that contained only the frequency components
from 2-7 GHz achieved a higher recognition rate (73.9 %
and 77.8 % for the two subjects) than the feature vectors
that contained only the frequency components from 7-12 GHz
(55.2 % and 59.1 %). This means that a potential extension
of the 2-12 GHz range would be most useful towards lower
frequencies. However, antennas for lower frequencies would
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Fig. 7. Phoneme recognition rates for speaker 1 (left) and speaker 2 (right) using linear discriminant analysis (top) and k-nearest neighbors (bottom) as
classifiers, and using different feature vectors. S11, S22, and S21 indicate, which spectral vectors have been concatenated to form the feature vectors: S11

is the spectrum of the reflection measurement with antenna 1, S22 is the spectrum of the reflection measurement with antenna 2, and S21 is the spectrum
of the transmission measurement from antenna 1 to antenna 2. For the results shown with dark gray bars, magnitude spectra have been used. For the results
shown with light gray bars, the real and imaginary parts of the spectra have been concatenated to form feature vectors of twice the length.

have a bigger size, which would be practical only to a limited
extent.

With regard to the subjects, phoneme recognition rates were
generally higher for speaker 1 than for speaker 2, indepen-
dently from the classification method and the feature vectors.
Since both speakers produced the speech items subjectively
very clear, the most probable explanation is that speaker 2 had
a metal dental implant as well as four amalgam (silver) fillings
in his right molars, which are likely to impede the penetration
of the microwaves through the vocal tract. Subject 1 did
neither have dental implants nor metal tooth fillings. However,
a definite clarification of this issue needs further investigations.

The recognition rates reported in Fig. 7 are unspecific
with regard to the kind of classification errors that have
been made. For a more specific picture, Table II shows the
confusion matrix of the LDA for the data of speaker 2 using
all three magnitude spectra as features. This matrix shows
that wrongly recognized speech items were mostly classified
as phonemes that are very similar from an articulatory point
of view. For the tense vowels, major confusions occurred
between /o:/ and /u:/, both of which are rounded back vowels.
The lax vowels were generally confused more than the tense
vowels, which is probably due to their more similar centralized
articulation. Here, the major confusions occurred between /E/
and /a/, which are also rather similar in articulatory terms. The
consonants were hardly confused, which was rather surprising
given their strong contextual variation. Notable is that there
were no confusions across the boundaries of the three classes
of tense vowels, lax vowels, and consonants.

The highest phoneme recognition rates achieved in the
present study were 93 % for speaker 1 and 85 % for speaker 2.

To put these numbers in context, Hueber et al. [7] reported
phoneme recognition rates of 59 % and 48 % for their two
subjects with a silent-speech recognizer that used video images
of the lips and ultrasound images of the tongue as sensory
data. However, they used about 1 h of continuous speech
and distinguished 40 phoneme classes instead of 25, which
partly explains the lower performance. Using a silent-speech
interface based upon surface electromyography, Jorgensen and
Dusan [10] achieved recognition rates of only 18 % for 40
phoneme classes. This suggests that the achievable recognition
rates depend to a fair amount on the modality and quality of the
sensory data. Most other studies on silent-speech recognition
did not report phoneme but word recognition rates for vocabu-
laries of different sizes, which cannot be directly compared to
our results (e.g., [3], [15], [4]). When the accuracy of acoustic-
based phoneme recognition is taken as the baseline for silent-
speech recognizers, representative reference values are 84 %
for speaker-dependent phoneme recognition [6], and 77 % for
speaker-independent phoneme recognition [39].

IV. CONCLUSIONS

In this study we explored to what extent microwave re-
flection and transmission measurements of the vocal tract
allowed the recognition of speech sounds. With our setup using
two antennas attached to the skin of the face, we achieved
phoneme recognition rates of 93 % and 85 % for the two
examined speakers. However, due to the limitations of the
used network analyzer, the phonemes had to be artificially
sustained, so that the data set contained only 230 items per
speaker. Nevertheless, the corpus was designed in such a way
that the speech samples reflected the articulatory variation of
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TABLE II
CONFUSION MATRIX FOR SPEAKER 2 AND THE CLASSIFICATION BY LINEAR DISCRIMINANT ANALYSIS. THE FEATURE VECTORS WERE FORMED FROM

THE CONCATENATION OF THE MAGNITUDE SPECTRA FROM THE ONE TRANSMISSION MEASUREMENT AND THE TWO REFLECTION MEASUREMENTS. THE
DATA CONTAINED 10 SAMPLES FOR EACH OF THE VOWELS, AND 8 SAMPLES FOR EACH OF THE CONSONANTS. THE AVERAGE RECOGNITION RATE WAS

77.4 PERCENT.

Recognized
a: e: i: o: u: E: ø: y: I E a O U Y œ b d g l ö f s S m n

In
te

nd
ed

a: 8 2
e: 9 1
i: 1 9
o: 6 4
u: 3 7
E: 3 7
ø: 1 9
y: 1 9
I 5 2 1 1 1
E 1 4 5
a 6 4
O 7 3
U 2 1 5 2
Y 3 7
œ 1 1 8
b 8
d 7 1
g 1 7
l 8
ö 8
f 8
s 1 1 6
S 8
m 7 1
n 1 7

the phonemes found in continuous speech. The application of
the proposed method to the recognition of truly continuous
speech requires faster equipment for the data acquisition. The
hardware for such real-time data acquisition and processing
could be developed based on commercially available integrated
circuits, and is the subject of future research. Using sweep
durations of about 5 ms, which poses no special problem,
it should then be possible to achieve a sampling rate for
the articulatory states of about 100 Hz. This would allow to
capture much more data and the application of more powerful
classification methods like deep belief networks. The system
can then also be extended for full-scale large-vocabulary
speech recognition based on the large body of algorithms that
have been developed for audio-based speech recognition. With
regard to the data acquisition, there is further optimization
potential in terms of the number, design, and placement of the
antennas, and the frequency range of the signals.
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