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Abstract

This paper describes a novel approach for copy synthesis of
human speech with the articulatory speech synthesizer Vocal-
TractLab (VTL). For a given natural utterance, an appropriate
gestural score (an organized pattern of articulatory movements)
was obtained in two steps: initialization and optimization. In
the first step, we employed a rule-based method to create an
initial gestural score. In the second step, this initial gestural
score was optimized by a genetic algorithm such that the cosine
distance of acoustic features between the synthetic and natu-
ral utterances was minimized. The optimization was regular-
ized by limiting certain gestural score parameters to reasonable
values during the analysis-by-synthesis procedure. The experi-
ment results showed that, compared to a baseline coordinate de-
scent algorithm, the genetic algorithm performed better in terms
of acoustic distance. In addition, a perceptual experiment was
conducted to rate the similarity between the optimized synthetic
speech and the original human speech. Here, similarity scores
of optimized utterances with regularization were significantly
higher than those without regularization.

Index Terms: articulatory copy synthesis, acoustic-to-
articulatory inversion, genetic algorithm, parameter regulariza-
tion

1. Introduction

Compared to unit-selection synthesis or statistical parametric
speech synthesis, articulatory synthesis can provide flexible
controls in speech generation and speech visualization [1]. It
benefits speech training of speech-impaired or hearing-loss peo-
ple, foreign language learning of normal-hearing students, and
speech production and perception research [2,3]. Articulatory
synthesis takes a time series of a set of parameters describing
a vocal tract model and converts it to an acoustic speech signal
using an acoustic model. The parameter time series are usu-
ally obtained according to one of two paradigms: (1) imitate
the assumed articulation underlying a speech sound as closely
as possible until some subjective quality criterion is met, or (2)
use a natural utterance as a reference and vary the articulatory
parameters until the resulting speech signal is as similar as pos-
sible to the reference, i.e., copy synthesis.

There are two types of methods to determine articulatory
parameters for copy synthesis. One of them is to make articula-
tory recordings, e.g., using electropalatography (EPG), X-ray
microbeam, electromagnetic articulography (EMA), or mag-
netic resonance imaging (MRI). Vocal tract shapes are mea-
sured from articulatory data and used to estimate area func-
tions for speech synthesis [4-6]. Another is to derive articu-
latory parameters directly from speech signals (i.e., acoustic-
to-articulation inversion). It is inexpensive and non-invasive to
collect speech signals compared to articulatory data. Dang and
Honda [7] implemented the estimation of tongue-position con-
trol points from vowel formants in their physiological articu-
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latory model. They used analysis-by-synthesis (AbS) to mini-
mize the formant distance between the input sound and the syn-
thetic sound, and finally, reproduced Japanese vowel-to-vowel
sequences.

When acoustic-to-articulation inversion is applied to con-
nected speech, the articulatory movements can be represented
in terms of a gestural score, a concept stemming from articula-
tory phonology [8]. A gestural score is an organized pattern of
multiple articulatory gestures for the realization of an utterance.
In general, a gesture represents movement toward a target con-
figuration of the vocal tract model or the vocal folds by the par-
ticipating articulators/parameters. In the context of articulatory
copy synthesis, an appropriate gestural score can be obtained
by temporally adjusting gestures to make the synthetic speech
sound like the original speech as much as possible, just like a
duplicate. Bauer et al. [9] implemented articulatory speech copy
synthesis by manually aligning and coordinating phonological
gestures with reference to acoustic landmarks. The resulting
gestural score was fed into VocalTractLab [10] to reproduce the
natural utterance. This process is obviously labor-intensive and
subjective. Aiming at facilitating the training of acoustic mod-
els for automatic speech recognition (ASR), some researchers
developed automatic methods to derive gestural scores from
speech signals [11, 12]. However, they made strong assump-
tion that the dynamical parameter (speaking effort) of gestures
do not vary from instance to instance, and only durations and
relative timings of gestures are allowed to change.

The genetic algorithm has been demonstrated to be ef-
fective for real parameter optimization, especially for non-
differentiable problems [13]. In the present paper we proposed
an approach for automatic articulatory copy synthesis based on
a genetic algorithm. This research was conducted with the ar-
ticulatory speech synthesizer VocalTractLab [1]. The gestural
score was represented as a chromosome, and the parameters of
the gestures were encoded as genes [13, 14]. A population of
individuals (candidate gestural scores) evolved under the law of
survival of the fittest. The fittest gestural score corresponded
to the synthetic utterance with the least acoustic distance to the
input utterance. The final gestural score with best fitness was
selected as the solution.

2. Method
2.1. Articulatory speech synthesis with VocalTractLab

VocalTractLab (VTL) is an articulatory speech synthesizer,
which simulates the articulation process, specified by gestu-
ral scores, and simultaneously produces acoustic signals. As
shown in the upper panel of Figure 1, a gestural score is or-
ganized in eight tiers corresponding to supraglottal articula-
tion, glottal settings, and lung pressure. The realization of each
phoneme is considered to comprise multiple gestures, which are
coordinated and distributed over the tiers. Each gesture consists
of three parameters [10]: a gesture value, a duration, and a time
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constant, which define target positions of articulators, their du-
ration, and how quickly the participating articulators reach the
targets (i.e., speaking effort), respectively.
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Figure 1: Schematic diagram of the proposed automatic articu-
latory copy synthesis based on a genetic algorithm. The upper
panel demonstrates the initialization step where phonetic tran-
scriptions in SAMPA are first mapped to gestures and then the
durations are aligned with the reference utterance. The lower
panel depicts the optimization step.

2.2. Gestural score initialization

In this step, we employed a rule-based method to create a ges-
tural score from a phonetic transcription of the reference utter-
ance. Each phone of a syllable was first mapped to a supra-
glottal gesture and a glottal gesture. We adopted the time struc-
ture model of the syllable to organize all gestures involved in
a word [15]. The temporal alignment of all the phones within
a syllable follows some simple principles: the initial consonant
and the vowel share the same onset of the syllable, and the other
phones are sequentially aligned after the vowel of the syllable.
Accordingly, a gestural score for a word is organized as follows
(here, for the German word “Buchung” as illustrated in Figure
1): the initial consonantal gesture (like gesture “ll-labial-stop”
for consonant [b]) and the vocalic gesture (like gesture “u” for
vowel [u:]) start at the syllable onset; the gestures of others
phones (like gesture “tb-velar-nas” for nasal [N]) are sequen-
tially arranged after the offset of the vowel gesture. The ges-
ture durations were specified with intrinsic durations of Ger-
man phonemes measured by Kohler [16]. The time constants of
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supraglottal gestures were set to their preferred values [17] (see
initial values in second column of Table 2) . The time constant
of a vowel followed that of its preceding consonantal gesture.
We linearly scaled the durations of all gestures within each syl-
lable such that the synthetic and the reference utterance had the
same length. In the fy tier, the gestures were estimated by the
TargetOptimizer [18], and were kept fixed during optimization.

2.3. Optimization based on coordinate descent

Although the synthetic speech of the initialized gestural scores
was intelligible, we aimed to reproduce the reference utterance.
Therefore, the initialized gestural scores were further fed into
the second step for optimization. We implemented a baseline
optimization system based on a coordinate descent algorithm
[19]. In each time step, we randomly selected a coordinate
direction (a parameter of gestures) and minimized the acous-
tic distance (see Sec. 2.6) by randomly searching neighboring
points, while fixing all other coordinates (other parameters to
be optimized). In each iteration, every coordinate was selected
once in random order. This procedure was repeated until the
maximum number of iterations was reached.

2.4. Optimization based on a genetic algorithm

The coordinate descent algorithm may suffer from difficulties in
convergence and lack of concurrency, so we proposed another
optimization approach based on a genetic algorithm (see the
lower panel in Figure 1), which imitates the biological mech-
anism of evolution. A genetic algorithm starts with an initial
population of individuals, where each individual is encoded by
its chromosomes. It then produces a new population (the chil-
dren) by recombining the chromosomes of individuals from the
initial population (the parents). The chromosomes of the chil-
dren then mutate and another generation can be created using
the mutated children as parents. In this study, the chromosome
represented the gestural score. Each parameter of gestures (du-
ration or time constant in Sec. 2.1) was encoded as a gene with a
real-valued encoding technique [13,14]. The initial population
of a certain size was generated by adding normally distributed
random values to parameters of the initialized gestural score.
Then the chromosomes of initial parents were randomly recom-
bined with one another to create children by the “crossover’” op-
eration, and these children would mutate by randomly adding a
random value (see details in Sec. 2.6). Next, all mutated chil-
dren (gestural scores) were fed into VTL to synthesize speech.
Those children with good fitness (closer acoustic distance to the
reference utterance) were selected and served as the population
of the next generation. The population evolved until the maxi-
mum number of iterations was reached. The aim of the evolu-
tionary strategy was to produce increasingly better individuals
over time, so eventually, the final optimal child corresponded to
the best gestural score for the natural utterance.

2.5. Reference utterances

Even though the optimization can be applied to any complex
utterances, individual words were used in this paper. The words
were selected as follows. First, we selected all two- and three-
syllable words from the pronunciation dictionary in [20] and
the phonetically balanced BITS corpus [21]. Then, frequently
used words of them (with a frequency level higher than 15 in the
frequency-based ranking list [22]) were kept. Next, a minimal
set of words covering all phonemes at least once were selected
based on a modified least-to-most-ordered algorithm [23]. We



repeated this step three times to cover more combinations of dif-
ferent consonants and vowels. Finally, the word list contained
30 two-syllable words and 11 three-syllable words. Speech sig-
nals of the selected 41 words, spoken in the carrier sentence
“Ich habe ... bestellt” by a male German native speaker, were
subsequently recorded in an audio studio environment.

2.6. Optimization settings

During optimization, the mutation operation was individually
performed on each parameter z; (1 < % < n,n is the num-
ber of durations or time constants to be optimized) by adding
a normally distributed random value with expectation zero and
standard deviation . The mutated parameter z; is defined as:

x; =x; +0-N;(0,1) (1)
where the so-called step size o was assigned with a fixed value
to all parameters of gestures of initial population, but was
adapted in each generation over time. The mutation was then
rewritten [24] as:

o} =0y -exp (7' - N(0,1)) + 7 - N;(0,1)) )

x; =x; + O'g . Ni(O, 1)
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is a reasonable choice when the number of evolution genera-
tions is between 20 and 100) [25]. For the assessment of the
fitness, the gestural scores of the mutated children were syn-
thesized with VTL. We used the cosine distance of acoustic
features to measure the similarity between synthetic and ref-
erence utterances. The smaller the distance, the more similar
the synthetic and natural utterances are. The cost function was
expressed as:

3 Sl X X )
M M O
\/Zj:l Xz‘Z,j \/Zj:l Xz’2,j

where N is the frame number of reference utterance, and M
is the number of acoustic features per frame. X; ; and X ;
are the jth features of the ith-frame of the natural and synthetic
utterances, respectively.

Due to motor equivalence phenomena in speech produc-
tion [26], the acoustic-to-articulatory inversion suffers from the
problem of non-uniqueness. One of the challenges was that dif-
ferent gestural values and temporal coordination of gestures can
result in very similar synthetic signals. As a result, the combi-
natorial explosion made the search space grow rapidly. Never-
theless, the problem can be alleviated by introducing additional
articulatory and phonological constraints [7] [27]. Here, by in-
corporating deviations of time constants from their preferred
values into the cost function, we limited gestural score parame-
ters to plausible values:
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where K is the number of time constants of all supraglottal ges-
tures. 7 and T are the current value and preferred value of
the kth time constant, respectively. Their absolute difference

)
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is cubed so as to exaggerate those with relatively bigger devia-
tions, thus giving higher penalty to them. [ is a scaling factor to
make the two costs have comparable magnitudes. « is a weight
to balance the two costs.

We used 42 acoustic features: 13 Mel-Frequency Cepstral
Coefficients (MFCC) and 1 voiced/unvoiced probability ex-
tracted using STRAIGHT [28] as well as their first and sec-
ond order derivatives. These features were extracted from a
25-millisecond-length window shifted every 10 milliseconds.
Using Bayesian optimization [29], we optimized the hyper-
parameters by minimizing the sum of acoustic distances of five
words. Table 1 lists the search ranges and optimized values of
hyperparameters.

Table 1: Hyperparameter optimization

Hyperparameter Search Range Result
Size of population Integer € 10, 30] 14
Number of children  Integer € [50, 150] 145
Initial o of mutation  Decimal € [0.0005, 0.005]  0.00198
Weight « Decimal € [0.7,0.99] 0.9

2.7. Perception experiment

In addition to the measurement of the acoustic distance, we also
conducted a perception experiment after optimization. 20 Ger-
man natives rated the similarity between the optimized synthetic
and corresponding reference utterances. Each time a word was
first prompted on a computer screen and then the reference ut-
terance and one corresponding synthetic utterance were played
to the listeners, with an interval of 0.6 seconds between them.
The order of the stimuli pairs was randomized for each subject.
They were asked to rate the similarity on a 4-point Likert scale
with “1” standing for “very different”, “2” for “rather different”,
“3” for “rather similar”, and “4” for “very similar”.

3. Results and discussion
3.1. Optimization results

We implemented three optimization systems: (1) coordinate de-
scent with regularization of time constants, (2) genetic algo-
rithm without regularization of time constants, (3) genetic algo-
rithm with regularization of time constants. They performed
100 iterations or generations, respectively. Figure 2 demon-
strates an example of a final gestural score and corresponding
synthetic speech optimized by the genetic algorithm with regu-
larization.
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Figure 2: The optimized gestural score and synthetic speech
for word “Performance”. Above the optimized gestural score
is the oscillogram and spectrogram of synthetic speech. As a
reference for comparison, the oscillogram and spectrogram of
the reference utterance are displayed above them.



We compared the performance of the three systems in terms
of the acoustic distance, i.e. equation (4). Although the 41 ut-
terances were optimized individually, we summed their acoustic
distances after each generations/iteration for the sake of com-
parison. As we can see from Figure 3, after the first 15 gener-
ations/iterations, the acoustic distance remains almost constant
for the coordinate descent method while it continues to decrease
for the other two methods. The genetic algorithm with regular-
ization outperforms that without regularization a little. How-
ever, the benefit of regularization is prominent when we further
examine the values of the optimized time constants. As we can
see form Table 2, the regularized time constants are not only
closer to their preferred values, but also have smaller standard
deviations.
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Figure 3: Acoustic distance (calculated with equation (4)) of

different optimization methods after each generation/iteration.
The Oth generation/iteration indicates the acoustic distance be-
tween initialized synthetic speech and original human speech.

Table 2: Initial and optimized time constants: average values in
milliseconds (standard deviations in parentheses)

Gestures Inital GA-reg. GA-non-reg.
11-1abial-fricative 10 10.2 (1.37) 13.0 (9.32)
11-l1abial-nasal 10 10.7 (1.15)  19.6 (9.05)
11-1abial-stop 10 10.3 (1.06) 12.3 (6.49)
tt-alveolar-fricative 15 14.4 (1.66)  20.0 (12.47)
tt-alveolar-lateral 5 6.3 (1.11) 15.6 (6.69)
tt-alveolar-nasal 15 16.5(1.16) 23.6 (11.81)
tt-alveolar-stop 15 14.8 (1.55) 16.8 (9.04)
tt-postalveolar-fricative 15 13.3(1.52) 7.5(5.12)
tb-palateralal-fricative 20 19.3(1.34) 18.1(12.85)
tb-uvular-fricative 15 15.5(2.09) 23.8(12.11)
tb-velar-nasal 20 22.3(0.24) 18.7(12.48)
tb-velar-stop 15 15.1(1.94) 12.7 (6.22)

3.2. Perceptual similarity

Figure 4 shows the boxplots of mean similarity scores of pooled
words and raters for different methods. Compared to the initial-
ized method (in which gestures were linearly scaled and aligned
with reference to natural utterance), the similarity scores in-
creased after optimization. A paired #-test shows that, the two
optimization methods with regularization achieved significantly
higher similarity scores compared to the method without reg-
ularization. However, no significant differences were found
between the genetic algorithm with regularization and the co-
ordinate descent with regularization, and between the genetic
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algorithm without regularization and the initial. The percep-
tion evaluation seems to be inconsistent with the acoustic mea-
surement. This could be explained that, the acoustic distance
was calculated frame-by-frame and the optimization methods
sought to the least sum of acoustic distance while listeners rated
the similarity based on the overall similarity. Listeners often
gave a low score to synthetic speech with a specific unnatural
or unintelligible segment but all other segments being well op-
timized. This may be a reason why the baseline system has a
big acoustic distance but a relatively high similarity score.
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Figure 4: Boxplots of mean similarity scores for different meth-
ods with the scores pooled across words and raters. The num-
bers next to the boxes indicate the mean values. (Considering
Bonferroni correction: *p < 0.0083; **p < 0.0017).

Besides, we found the proposed method did not always
work well for all phonemes. For example, nasal consonants
sometimes become too weak to perceive, and even totally dis-
appeared after optimization, although they could be clearly per-
ceived in the initial utterances. This may result from the effect
of antiformants. Another factor that may influence the opti-
mization is the speaker variation, i.e. the acoustic differences
of the same phoneme produced by different speakers, which
inevitably distorts the similarity measurement especially when
the acoustic distance is calculated frame-by-frame between syn-
thetic and original utterances.

4. Conclusions and future Work

In the present paper, we proposed a novel approach to the auto-
matic copy synthesis of human speech. We employed a rule-
based method to create initial gestural scores, and then op-
timized them using a genetic algorithm, which increased the
acoustic similarity between synthetic and reference utterances.
By incorporating regularization, we limited the time constants
to plausible values, thus obtaining better perceptual similarity
scores. Meanwhile, we found that the proposed method did not
always work well for all phonemes. In the future, attentions
will be focused on seeking robust acoustic features and trying
speaker adaptation techniques, e.g. applying vocal tract length
normalization (VTLN) to feature extraction. We will also test
more words produced by different speakers.
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